3-Abelian Cubes Are Avoidable on Binary Alphabets

نویسندگان

  • Robert Mercas
  • Aleksi Saarela
چکیده

A k-abelian cube is a word uvw, where u, v, w have the same factors of length at most k with the same multiplicities. Previously it has been known that k-abelian cubes are avoidable over a binary alphabet for k ≥ 5. Here it is proved that this holds for k ≥ 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On some generalizations of abelian power avoidability

We prove that 2-abelian-cubes are avoidable over a binary alphabet and that 3-abelian-squares are avoidable over a ternary alphabet, answering positively to two questions of Karhumäki et al.. We also show the existence of infinite additive-cube-free words on several ternary alphabets. To achieve this, we give sufficient conditions for a morphism to be k-abelian-n-power-free (resp. additive-n-po...

متن کامل

Avoidability of long k-abelian repetitions

We study the avoidability of long k-abelian-squares and k-abeliancubes on binary and ternary alphabets. For k = 1, these are Mäkelä’s questions. We show that one cannot avoid abelian-cubes of abelian period at least 2 in infinite binary words, and therefore answering negatively one question from Mäkelä. Then we show that one can avoid 3-abelian-squares of period at least 3 in infinite binary wo...

متن کامل

Avoiding 2-binomial squares and cubes

Two finite words u, v are 2-binomially equivalent if, for all words x of length at most 2, the number of occurrences of x as a (scattered) subword of u is equal to the number of occurrences of x in v. This notion is a refinement of the usual abelian equivalence. A 2-binomial square is a word uv where u and v are 2-binomially equivalent. In this paper, considering pure morphic words, we prove th...

متن کامل

Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

We show that every binary pattern of length greater than 14 is abelian-2-avoidable. The best known upper bound on the length of abelian-2-unavoidable binary pattern was 118, and the best known lower bound is 7. We designed an algorithm to decide, under some reasonable assumptions, if a morphic word avoids a pattern in the abelian sense. This algorithm is then used to show that some binary patte...

متن کامل

Avoiding two consecutive blocks of same size and same sum over $\mathbb{Z}^2$

We exhibit an algorithm to decide if the fixed-points of a morphism avoid (long) abelian repetitions and we use it to show that long abelian squares are avoidable over the ternary alphabet. This gives a partial answer to one of Mäkelä's questions. Our algorithm can also decide if a morphism avoids additive repetitions or k-abelian repetitions and we use it to show that long 2-abelian square are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013